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Modeling protein thermodynamics and fluctuations at the mesoscale
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We use an extended Go model, in unfrustrated and frustrated variants, to study the energy landscape and the
fluctuations of a model protein. The model exhibits two transitions, folding and dynamical transitions, when
changing the temperature. The inherent structures corresponding to the minima of the landscape are analyzed
and we show how their energy density can be obtained from simulations around the folding temperature. The
scaling of this energy density is found to reflect the folding transition. Moreover, this approach allows us to
build a reduced thermodynamics in the inherent structure landscape. Equilibrium studies, from full molecular
dynamics (MD) simulations and from the reduced thermodynamics, detect the features of a dynamical transi-
tion at low temperature and we analyze the location and time scale of the fluctuations of the protein, showing
the need of some frustration in the model to get realistic results. The frustrated model also shows the presence

of a kinetic trap which strongly affects the dynamics of folding.
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I. INTRODUCTION

Proteins are fascinating molecules which perform a large
variety of functions in biological systems. The most remark-
able property of some proteins is their ability to work as
molecular motors, i.e., to turn chemical energy into mechani-
cal motion. How this occurs is not understood but even the
basic properties of proteins, such as their folding or their
glass transition, raise many questions yet unanswered. For
instance, for a long time folding has been assumed to occur
in successive stages, first the formation of secondary struc-
tures and then their positioning in space. This is now ques-
tioned because studies show that the « helix may require the
environment of the protein to be stable, so that folding has to
be global [1]. On another hand, the “glass transition,” which
is the low-temperature freezing of the large conformational
changes which exist at biological temperature, is still the
subject of many investigations presently, in particular to de-
termine to what extent it is slaved to a transition in the sol-
vent [2], and a consensus has yet to be reached concerning
the form and time scales of the protein motions activated
when this dynamical transition [3] is passed by raising tem-
perature.

The specific properties of proteins are closely related to
their fluctuations, which have been the object of numerous
investigations. For instance, NMR spectroscopy [4] which
can precisely study the fluctuations of the side chains of the
amino acids that compose a protein, neutron scattering [5], or
dielectric measurements [6] have observed a large increase
of the fluctuations above approximately 200 K correspond-
ing to the dynamical transition. But experiments are rather
crude tools to study fluctuations [7] because they provide
ensemble averages such as root-mean-square quantities. Re-
cently subtle properties of the fluctuations have been inves-
tigated with single molecule experiments [8] but even when
ensemble averages are eliminated by such studies, the ex-
periments are observing time averages because they measure
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over time domains which are much longer than the time
scale of the fluctuations. This is why many theoretical studies
using protein models, which can study individual motions
with high resolution, have been performed. Here too various
views are possible. It is tempting to use all-atom molecular
dynamics simulations to directly investigate protein dynam-
ics with a high accuracy. This has been done successfully for
small proteins [3,9,10]. Molecular dynamics is perfect to
study subnanosecond dynamics but some conformational
changes occur on much longer time scales which can extend
to us or more. Therefore even when low temperature simu-
lations observe some features characteristic of the glassy be-
havior such as the Boson peak [10], they only study the
properties of fast fluctuations and not the conformational
changes which, at these temperatures, are rare events. Fold-
ing is an even slower process and the first numerical experi-
ment to “fold a protein with a computer” with an all-atom
model was a challenge that required a huge computer power
[11].

To overcome these difficulties, another limit is to consider
highly simplified models. Two-dimensional dynamical mod-
els have given useful information [12,13] and even simpler
models, lattice models, where the motion of the protein is
restricted to positions on a discrete lattice [7,14] have given
interesting insights on protein fluctuations.

There are, however, some questions that these simple
models cannot answer, it is all those which are related to the
complex geometrical structure of a protein. To address these
questions, one needs a model which describes the full three-
dimensional structure of an actual protein, while being
simple enough to allow studies on long time scales. Such a
model, proposed a long time ago by N. Go and co-workers
[15], became popular as the “Go model.” The idea is to de-
scribe only the backbone of the protein and design the po-
tentials for the interaction between its elements to make sure
that the ground state of the model corresponds to the native
state of the protein of interest. Although the original paper
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shows that the model can describe the fluctuations of the
protein configuration between different conformations, the
model has essentially been used to study folding. The prop-
erties of a protein cannot be reduced to its folding transition,
and therefore one should consider a model which can repro-
duce not only protein folding but other typical features. One
of them, which is particularly important and typical of pro-
teins, is their dynamical transition, which is rather univer-
sally observed for various proteins. Because the two transi-
tions are major features of proteins, it is important to study
them in conjunction with each other. This is the aim of our
study and to our knowledge it is the first time that these two
basic features of proteins are studied theoretically in the
same framework. The Go model, provided it is enriched by
some minimal frustration, allows such a study, which on one
hand tells us more about proteins by comparing the results
provided by the model with known experimental facts, and,
on another hand, brings results on the requirements that a
minimal protein model has to fulfill. The questions that we
want to address are the following:

(i) How is the energy landscape of a protein? The notion
of energy landscape, which designates the potential energy of
a protein as a function of its numerous degrees of freedom
[16] has been a very fruitful tool for the reasoning on protein
properties because it leads to a conceptual image of the en-
ergetic configurational space. However, it is a highly multi-
dimensional object which cannot be drawn or even computed
although some of its properties have been determined for
very simple protein models [17,18], small molecules [19], or
secondary structure elements of a protein [20]. We introduce
here a method which allows us to fully characterize the den-
sity of states of a reduced version of the energy landscape
which corresponds to the minima of the full energy land-
scape. It can be obtained for a three-dimensional model of an
actual protein and, moreover, the ability to precisely get its
density of states allows us to exhibit scaling properties in the
landscape, which are strongly correlated with the folding
transition. Moreover, we show that the knowledge of the
reduced energy landscape can be used to derive a reduced
thermodynamics of the protein, which characterizes the
properties of its conformational fluctuations to a high accu-
racy.

(ii) How does the protein explore its energy landscape?
This question is related to the dynamical transition of the
protein. Below the transition temperature, the fluctuations of
the protein are restricted and very local, and the protein can
hardly explore its global energy landscape. While experi-
ments clearly demonstrate that the solvent plays a role in this
transition [21], one may wonder whether the complexity of
the landscape of an actual protein would be sufficient to lead
to such a dynamical transition. Molecular dynamics simula-
tions of isolated proteins answer this question positively
[22-24], but these calculations are limited to a time scale of
the order of 1 ns and thus cannot probe a possible slowing
down when the transition is approached from above. Besides
the effect of the solvent, the conformational change of side
chains can contribute to the dynamical transition [25,26].
Such local conformational changes would in turn induce
changes on a larger scale, showing up in fluctuations of the
backbone itself. In simple models the effect of solvent is
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implicitly included in the effective potential for the back-
bone, which does not depend on temperature. A possible ef-
fect of a temperature dependent dynamics of the solvent is
precluded and the occurrence of the conformational changes
of the side chains is omitted. Thus the only dynamical effects
that can occur come from the way the protein explores its
energy landscape. A full molecular dynamics study of our Go
model for time scales longer than 1 ws indicates that the
motion of the backbone can exhibit the dynamical transition,
without any explicit driving by the solvent or the conforma-
tional changes of the side chains. We think that the complex-
ity of an actual protein, with its full chemical structure and
solvent effects is not a prerequisite for a physical system to
exhibit both a folding and a dynamical transition, and this
suggests that minimal models can be used in a meaningful
way to understand some important properties of proteins.

(iii) What features are required in a “minimal” protein
model? In spite of its importance, taking into account the
complex geometry of the protein backbone in the modeling
is not sufficient to lead to a realistic model. Our study allows
us to precisely see how the observations depend on the fea-
tures of the model by showing that a minimal frustration is
necessary to lead to realistic results, in agreement with the
conclusions of statistical physics studies [27,28].

The organization of the paper is the following. We first
introduce the model in Sec. II. We discuss two versions of
the model, a simple unfrustrated Go model, and a model in
which frustration is introduced through the dihedral angles.
They are then tested against various actual properties of pro-
teins in order to determine the conditions that an appropriate
model should meet. Examining folding and unfolding gives a
first hint that frustration is necessary.

Section III investigates the equilibrium properties of the
model. In the spirit of studies performed to study glasses we
analyze the numerous metastable states which exist in the
energy landscape of the model, which correspond to the so-
called “inherent structures” of glasses. We show that a ther-
modynamics of the inherent states can be built and that it
describes the equilibrium properties associated to the confor-
mational changes of the protein.

Section IV investigates the dynamical properties of the
protein in equilibrium. The temperature evolution of its fluc-
tuations, their location within the structure, and their time
scales are computed and discussed in comparison with
known experimental properties. This section strengthens the
need of some frustration in the model.

Section V investigates the out of equilibrium properties of
the protein, in particular the dynamics of its folding when
temperature is abruptly reduced from a high value to a value
below the folding temperature. It allows us to characterize
the energy landscape further by extracting some information
on the barriers between minima. All these results allow us to
discuss the modeling of proteins at mesoscopic scale in Sec.
VI and to examine some of their properties, particularly the
dynamical transition.

II. MODEL
A. The models

We chose to study a small protein containing all types of
typical secondary structure elements (« helix, B sheets, and
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loops), protein G (the B; domain of immunoglobulin binding
protein [29], Protein Data Bank ID code 2GB1). It contains
56 residues, with one « helix and four S strands forming a 3
sheet. Its NMR structure is shown in Fig. 1.

As discussed in Sec. I we want a model able to describe
the actual geometrical structure of the protein, but neverthe-
less sufficiently simple to allow us to investigate slow pro-
cesses, such as the conformational changes at low tempera-
ture, or folding. To study the fluctuational dynamics of the
protein we need an off-lattice model. All those requirements
naturally lead to the choice of an off-lattice Go model
[31,15], which is rather simple but nevertheless accurate
enough to reproduce experimental properties of the transition
state for several proteins [32].

The design of this model, which only describes the back-
bone of the protein defined by the chain of C“ carbons, is
tailored to the correct description of the geometry, but the
expression of the potential energy only uses a small number
of parameters and does not intend to be quantitatively cor-
rect, as it is the case for the all-atom models. The main idea
of the model is to classify all possible contacts as either
“native” (i.e., present in the native conformation) or “non-
native.” The potential energy is then constructed so that na-
tive contacts are favorable, and non-native contacts are less
favorable, neutral, or repulsive. It is given by

Nl g N2y
b a
V= E ?(bi_bOi)z"' E 7(01'— 90i)2

i=1 i=1

native 12 10 non-native 12
Toii Toii C
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N,-3 K
+ 2 f[l—cos(hﬁi—gﬂ, (1)

i=1

where N, is the number of residue, b;, 6, and ¢; are the ith
bond length, ith bond angle, and ith dihedral angle, respec-
tively. r;; is the distance between ith and jth residues. The
index O denotes the parameters determined from the native
structure. The model includes local and nonlocal interac-
tions. The local interactions are the bonds which define the
C“ chain through stiff elastic potentials describing the cova-
lent bonds, angular potentials between adjacent bonds, and
dihedral potentials. The natural bond length or bond angles
are determined from the native structure. The nonlocal bonds
connect C* carbons which are not adjacent along the peptide
chain, but nevertheless close in space in the folded geometry
of the protein. Such carbons are said to form a “native con-
tact” and interact with a Lennard-Jones potential in the
model. They are determined from the experimental structure
of the protein in its folded state: two C® carbons are said to
form a native contact if the distance between them or be-
tween atoms of the side chains attached to them is less than
a critical distance, here chosen as 5.5 A. A repulsive interac-
tion is introduced between all C* carbons which do not form
a native contact to describe the steric repulsion. For K,;=0 all
the interactions are at their minimum energy in the native
state. This is the choice made in the original version of the
Go model and models having this property are generally
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FIG. 1. (Color online) Representation of the main structural el-
ements of the B; domain of protein G (drawn with VMD [30]). The
purple part corresponds to the « helix, while the yellow ribbons are
B sheets. Residue number 1 is the end of the chain at the top right
of the figure. The main structural elements of this protein are two 8
strands comprising residues 1-7 and 14-19, which form a (3 sheet
denoted by By, one « helix made of residues 23-35, and two S
strands comprising residues 42—-46 and 51-55, which form the g
sheet called SB¢. Other residues belong to loops.

good folders, i.e., their folding transition is sharp and leads
to a well defined structure, because the native state does not
result from a compromise between competing interactions.
The model with K;=0 is unfrustrated and will be henceforth
denoted as “model U.”

The choice of an unfrustrated model becomes question-
able if we want to investigate the fluctuations of the protein
because the structure of actual proteins results from a com-
promise between different interactions. This introduces frus-
trations which are likely to play an important role in the
protein dynamics. Proteins have been described as “mini-
mally frustrated systems” [16], and this is why we have in-
troduced the possibility to add a frustration coming from
competitive dihedral angle interactions [31]. It is provided by
the last term of Eq. (1). When K;# 0 (K;=0.3 in our case),
the last term tends to favor dihedral angles equal to /4
(mod ) which are not exactly equal to the value of the
dihedral angles in the native structure. This energy terms
competes with the other contributions. This leads to a ground
state slightly distorted with respect to the native structure,
but the geometrical influence of the dihedral potential terms
stays small, while it has a significant influence on the dy-
namical properties of this version of the model, called frus-
trated model (or “model F”), as shown below. Such frus-
trated models are still simple but nevertheless accurate
enough to reproduce experimental properties of the transition
state for several proteins. The introduction of the frustration
through a constraint on the dihedral angle might sound arbi-
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trary. First one should realize that, as pointed out above, the
potential energy of Go models does not claim to be quanti-
tatively correct. This is a remarkable feature of Go models
that they are able to give results which agree with experi-
ments, for instance for the structural details of the transition
state and intermediates for folding [32] although their poten-
tial energy is highly simplified. In the same spirit, introduc-
ing frustration through the dihedral angles can be understood
as a way to include a physical effect, frustration, through the
simplest description that is qualitatively correct. Second, an
analysis of the folding of different proteins described by
frustrated Go models where the frustration was introduced
through the dihedral angles showed the validity of this ap-
proach [31] because, for small fast-folding proteins, the en-
ergetic roughness is not the dominant factor determining a
sequence’s foldability. Topological frustration, which can be
described by the dihedral angle contribution, is even more
important [32].

The dimensionless parameters used in our calculations are
K,=200.0, K,=40.0, K;=0.3, €=0.18, and C=4.0. Time is
also a dimensionless variable, measured in arbitrary time
units.

Our investigations have been carried by molecular dy-
namics simulations using underdamped Langevin simula-
tions [33], where the mass of all the residues is assumed to
be equal to 10 and the time step used in the simulation is
equal to 0.1 time unit. They show that the model has the
expected qualitative properties of a good folder: at low tem-
perature it folds to the global minimum of the potential en-
ergy, while at high temperature it denatures. If the model is
cooled down quickly from a high temperature unfolded state,
the folding is, however, very slow, and may never reach the
global minimum within the time scale accessible in a simu-
lation. This suggests that this model protein exhibits the
glassy properties observed for actual molecules.

However, except in Sec. V, our goal is not to explore these
out-of-equilibrium states, but rather to analyze the equilib-
rium properties of the protein. Therefore to avoid long non-
equilibrium transients which occur on cooling, most of our
simulations have been carried by starting from the ground
state, and heating up to the temperature of interest. As dis-
cussed below, the formalism that we introduce to study the
equilibrium properties allows us to avoid the difficult issue
of the ergodicity of simulations at low temperature so that
the pathway that we use to reach a particular temperature is
not an issue which could affect the results.

B. Folding properties

The folding transition of the two models can be detected
by comparing the shape of the protein with the fully folded
native state. The comparison can be quantified by introduc-
ing the dissimilarity factor [34] which is a weighted distance
map between two conformations. Let A and B be two con-
formations of the protein (for our purpose B will be the na-
tive structure) and a;, bij the distance between residues i and
Jj in these conformations. The dissimilarity d(A,B) between
the two conformations is defined by
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FIG. 2. (a) Temperature evolution of the dissimilarity between
the average structure of the protein model and the native structure.
(b) Temperature evolution of the specific heat of the protein model.
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where a;; and b;; are the distances between residues i and j in
the A and B conformations and p is an integer which deter-
mines how much residues which are far apart contribute. For
large p only the closest neighbors contribute to the weighted
map, while for the value p=2 that we are using, residues
separated in space by a greater distance also contribute. The
dissimilarity factor is a quantitative measure of the deviation
between the geometries of two conformations.

For our applications conformation B will always be cho-
sen as the native structure of the protein, so that when we
speak henceforth of the “dissimilarity factor” we mean the
dissimilarity between the conformation of interest and the
native structure. With this definition the dissimilarity factor,
that we shall denote by D, vanishes when the conformation is
identical to the native structure and increases when the ge-
ometry of the conformation of interest deviates from the na-
tive structure.

Figure 2(a) shows that, when temperature is lowered from
a high value, the dissimilarity factor drops sharply in a nar-
row temperature range. The corresponding temperature can
be identified as the folding temperature of the protein model,
henceforth denoted by 7. The variation of the specific heat,
plotted in Fig. 2(b), shows a peak which confirms that 7, can
be viewed as a thermodynamic transition between two states,
the unfolded state at high temperature and the folded state
below T. This transition is sharp as expected for Go models

041916-4



MODELING PROTEIN THERMODYNAMICS AND...

which are unfrustrated (model U) or weakly frustrated
(model F). There are, however, differences between the two
cases, T{U) <TAF), and the transition is slightly sharper for
model F than for model U.

III. EQUILIBRIUM PROPERTIES

The complete energy landscape of the protein is very hard
to determine but a partial picture can be obtained by looking
for all its metastable states. They correspond to the so called
“inherent structures” in the language of glasses [36]. The
interest is that, although it contains less information than the
free energy landscape, the inherent structure landscape con-
tains nevertheless a rich set of data on the protein and, more-
over, it can be obtained from simulations at temperatures
well above the temperature at which the protein shows a
dynamical freezing which avoids possible ergodicity prob-
lems. In this section we would like to show how it can be
obtained, and then how it can be used to build a thermody-
namics of the conformational motions of a protein.

A. Obtaining the inherent structure landscape

Inherent structures are local minima of the energy land-
scape of the protein. Each one, labeled by an index «, cor-
responds to a basin of attraction in the phase space which is
defined as the set of conformations which are connected to
the same local energy minimum. In practice they are ob-
tained by sampling the phase space with molecular dynamics
(MD) trajectories at constrained temperature, and then
quenching instantaneous configurations by calculating a
steepest-descent path from these points of the trajectory. The
MD trajectories involve 3 X 10% steps after the desired tem-
perature is reached, and for each temperature 20 simulations
are performed with different sets of random numbers in the
Langevin equations used to thermalize the system. For each
temperature, quenchings are made for 6 X 10* instantaneous
configurations separated by 10° steps.

In order to characterize the inherent structure landscape
we need not only the values of the energies e, but also their
density of states );4(e,). A realistic protein has a huge num-
ber of inherent states so that {);4(e,) cannot be determined
from a systematic search. Instead it can be deduced from a
sampling of the inherent structures which gives the probabil-
ity Pys(e,,T) to be in the basin of the inherent structure « at
temperature 7.

In the basin of attraction of inherent structure «, the po-
tential energy of the protein can be written as V(r)=e,
+AV(r), where r designates all the degrees of freedom of the
protein. Let us assume that the inherent structures can be
split into a set of discrete states «,q;,...,ag (Which in-
cludes at least one state, the ground state) and a continuum
of higher energy states. With this notation, the configura-
tional contribution of the partition function of the protein is

oK €max
2T = X e PeaePlrolel) 4 f Qsle)e Peae P @Dge
ai=ay e

(3)

where e,,,, is the highest inherent structure energy. More-
over, we have introduced
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which is the vibrational free energy in the basin of attraction
B(a) of the inherent structure «. The probability to be in the
basin of attraction of a discrete inherent structure is

1
T=—-— - - BF,(a, T 5
Pu1)= 50 0= Beg)oxpl=BE (D] (5)
and, for the continuum of inherent structures, the probability
density of inherent structures is

L

Psle,T) = 20

Qys(e)exp(= BeJexp[— BF,(a.T)].

(6)

If we can assume that the free energy F,(a,T) does not
depend on the inherent structure, in Z the term
exp[—BF,(T)] can be factorized so that p, and Ps simplify
into

P,

; 1
———, Pile,T)=—=Qle)e e (7)
ZIS(T) IS IS

PaiT) = Z5(T)

with

K ©max
Z(T) = 2 e Pat f Qysle,)e Pade,.  (8)

0 ag

Z;s can be viewed as an inherent structure partition function.
It can be expressed in terms of the probability pao(T) that the
protein is in the basin of attraction of the ground state, which
is henceforth denoted as py(T). This allows us to rewrite
Pile,,T) as

PIS(ew T) :pO(T)QIS(ea)e_ﬁEa» (9)

if we chose the ground state energy as the reference state of
the energies (ea():O). Equation (9) provides a method to
compute (e,) from the probability density Pj(e,,T) de-
duced from the sampling of MD trajectories.

The validity of the method relies on the assumption that
the vibrational free energy in a basin of attraction F,(«,T)
does not vary significantly from a basin to another. For har-
monic basins of attraction, we have

i
F(a,T) :kBTEq‘, ln<k3&7:>’ (10)

where the values w, are the frequencies of the vibrational
modes of the protein when it is in the configuration corre-
sponding to the inherent structure a. Of course these fre-
quencies change individually from one inherent state to an-
other, but they keep the same order of magnitude, and the
sum has an averaging effect that keeps F,(«,T) only weakly
dependent of the conformation. This is verified by our calcu-
lations because ()g(e,) deduced from Ple,,T) at different
temperatures gives the same result in all the range of inherent
structure energies which are accessed with a sufficient prob-
ability to allow a correct sampling at the temperature consid-
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model U (T,=0.97T;, T,=1.07 T;)

PHYSICAL REVIEW E 74, 041916 (2006)

QI-‘E’i (ea ) deoc

FIG. 3. Comparison of the density of states

o 5 10 15 0 5 10 15 0 5 10 15 Qs(e,) computed from the probability densities
e, / kgT; e, / kgT; e, / kgT; Pig(e,,T) deduced from molecular dynamics tra-
jectories at three different temperatures 7= T, T
model F (T ,=09T;, T,=1.12T;) =0.837;, and T=0.697; for the unfrustrated
T T T T T T T T T model U (top part) and the frustrated model F
. 10% | TMe=10 - - TT;=083 - - TT;=089 - 108 (bottom part) (de,=0.02).
D
T
S’f - 10°
@
G 10°

4] 5 10 15 0 5 10 15 0 5 10
e, / kgT; e, / kgT; e, ! kgT;

ered. Figure 3 shows the density of states ();4(e,) computed
from the sampling of molecular dynamics trajectories at
three temperatures. The figures are remarkably similar, dem-
onstrating that the assumption that F,(«,T) can be elimi-
nated in the calculation is a good approximation, however,
the three figures are obviously not identical. The figure de-
duced from the calculation at the lowest temperature shows
some values of e, where the density of states appears to
vanish, while it does not vanish if Q(e,) is computed from
a trajectory at higher 7. This is particularly noticeable for
high values of e, and it points out the limit of the numerical
calculation. As shown from Eq. (9), the probability to be in
the basin of attraction of an inherent structure decreases as
exp(—e,/kgT). Therefore if we use a molecular dynamics
trajectory at a low temperature to sample the basins of attrac-
tion of the inherent structures, it may happen that we com-
pletely miss some inherent structures due to insufficient sam-
pling. This is even more likely if the basin of attraction of a
given inherent structure is narrow because, besides the tem-
perature factor, its small size also reduces the chance to
sample it properly. Studies performed at higher temperature
reduce this problem and T'=Ty is particularly appropriate be-
cause we expect a molecular dynamics trajectory to sample
both structures corresponding to folded and unfolded states.
Once O (e,) has been determined from Eq. (9) at a tempera-
ture where the sampling is particularly efficient, Z;i(7) can
be computed at any temperature with Eq. (8), including low
temperatures for which MD calculations might become in-
correct due to ergodicity problems.

Figure 4 displays ();5(e,) in a large range of energies.
Although it has the same general shape for models U and F,
there are some differences in the low energy range (see the
insets), near the ground state, which is separated from the
others. For model U there is a large gap between the ground
state and the next state. On the contrary, model F' shows a

15

few states which have an energy very close to the ground
state, separated from higher energy states by a large gap. The
calculation of the dissimilarity between the native state and
the cluster of states near the ground state gives very small
values (D=0.02), well below dissimilarity values that corre-
spond to a real change of the protein shape when it unfolds.
This indicates that, although the ground state is not isolated
from others by a large gap, model F' is nevertheless a good
folder [35] because the cluster of states near the ground state
can be considered as belonging to the same fold as the native
state [37]. Therefore the protein does evolve towards a
unique geometrical structure when it folds. This points out an
additional richness of the off-lattice models with respect to
lattice models for which a ground state isolated from all the
others by a large gap appears to be a prerequisite for good
folders [35].

For larger energies (s(e,) shows an exponential growth,
with two different slopes depending on the energy range:

QIS(ea') = QQ exp[g(ea)] (l 1)
with
o
+A (ea < 45kBTf)9
kBTS !
gley) = (12)
Cq
kBTu (ea > SOkBTf) .

where (), and A are positive constants, and 7,=1.07T, T,
=0.97T} for model U and T,=1.12T, T,,=0.9T for model F.
It is interesting to notice that a similar exponential depen-
dence of the density of metastable state was found for spin
glasses [38] although the energy dependence of g(e,) is more
complex for such systems.

The density of states in the inherent structure landscape is
related to the probability density of the occupation of the
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FIG. 4. Top figures: density of state g(e,) for the inherent
structures, which is obtained from Pjg(e,,Ty) according to Eq. (9).
The inset shows a magnification of the curve for the energies close
to the ground state. The dotted lines are two distinct exponential
functions with exponent corresponding to Eq. (12). Bottom figures:
probability distribution (in logarithmic scale) of the inherent state
energies at temperature 7.

different basins of attraction versus temperature through Eq.
(9) which gives

1 1 1
Pis(eT) = ——Q exp[@<— - _> +A}

Z5(T) kg\T, T
for e, < 45kpT}, (13)
PenT) = ——0 {@<i 1)] for e, > 50k,T
5 - ZIS(T) 0ExP kB Tu T o Ca pr
(14)

In the low temperature range, the contribution to Pg(e,,T)
given by Eq. (13) dominates that given by Eq. (14). As a
result, in this temperature range, Pjg(e,,T) takes its largest
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values for low e, corresponding to the folded state. On the
contrary, at high temperature Pjs(e,,T) is dominated by the
term coming from Eq. (14), so that high-energy inherent
structures are the most likely, corresponding to the unfolded
state. And, in the range T, <T=T,;<T, none of the two
terms dominates and P(e,,T) has two humps, one of them
at low e, corresponding to folded structures, the other one at
high e,, corresponding to unfolded structures, as shown in
Fig. 4 (bottom figures). This is particularly true for model F
while Fig. 4 shows that at 7=7; model U occupies a con-
tinuum of structures ranging from folded to unfolded states
because the two temperatures 7, and 7, are close to each
other and the humps overlap. This picture is consistent with
a first order transition, 7, <T<T, being the coexistence re-
gion, so that the two temperatures exhibited by the analysis
of Q4(e,) appear as the limit of the spinodals. These char-
acteristics are consistent with the behavior of the specific
heat C,,.

B. Thermodynamics in the inherent structure space

The density of inherent structures energies and the asso-
ciated partition function Z;4(7) are not only useful to charac-
terize the folding transition. They can also tell us a lot on the
thermodynamics of the protein. We can build a thermody-
namics only based on the configurations of the inherent
structures by the usual scheme of statistical mechanics,

UIS(T) =(ey) = J e Pis(eqT)de,, (15)

Fis(T) =— kBTln[ZIS(T)]’ (16)
Uis—F

Sis(T) = —IST = (17)

<Aea2> _ <ea2> - <ea>2
kgT> — kgT?

Cis(T) = , (18)
where Uy, Fig, Sig, or Cjg are the internal energy, Helmholtz
free energy, entropy, and specific heat, respectively, deduced
only from the thermal fluctuations between conformations,
so that they can be called conformational energy, conforma-
tional free energy, etc. They are shown in Fig. 5.

The conformational specific heat is very similar to the full
specific heat of Fig. 2, although the peak at 7 is smaller than
the peak obtained from MD simulations, which is not sur-
prising because some aspects are lost when one only consid-
ers the inherent structures instead of the exact conformations
of the proteins. The detailed analysis of Fig. 5 (middle fig-
ures) which displays the vibrational specific heat per residue
Cyw/N,=(C,—Cs)/N, and conformational specific heat Cyg
shows that the vibrational contribution of the specific heat is
very close to the value 3kz/2 expected for harmonic oscilla-
tors. This suggests that the thermalization in the basin of
attraction of each inherent structure allows a good separation
between a vibrational part and a conformational part of the
specific heat. When comparing the values of Cy, and C;5 one
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FIG. 5. Thermodynamic quan-
tities defined from the inherent
structures. Top figure: conforma-
tional specific heat Cg/kg. The ar-
rows on the top axis point to the
values of the temperatures 7, and

.5 T, which enter in the expression

of the density of inherent states
[Eq. (12)]. Middle figure: magni-
fication of the variation of the spe-
cific heat in the low temperature
range, showing also the contribu-
tion Cy=C,—Cj, which is ex-
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should notice an essential difference between the two. Cyy is
a vibrational contribution, which comes from all the residues
and, as it is well approximated by the harmonic value, it
indicates that the contributions of all vibrational degrees of
freedom are independent, so that Cy,/N, has an actual physi-
cal meaning. On the contrary, the structural fluctuations en-
tering in C;g may be either a flip of a residue for instance,
and thus can be very local, or a slow structural change ex-
tending to a significant part of the protein, such as the motion
of the whole « helix. This is why the quantity C;g/N, would
not have a physical meaning because a protein is not a self-
similar structure. A meaningful comparison must compare
Cisto Cy/N,: structural fluctuation will start to play a role in
the physics of the protein when C;3>Cy/N,. As shown in
Fig. 5, Cjg starts to rise significantly around 0.37, and
quickly takes over for 7> 0.4Tf, while the fluctuations are
dominated by the vibrational contribution in the low tem-
perature range.

The behaviors of the conformational entropy and energy
(Fig. 5, bottom plots) show a similar rise clearly visible for
T>0.4T;. The increase of entropy which appears to acceler-
ate and become exponential for 7>0.4T} (see inset) can be
understood as coming from the structural variety observed in
the thermal fluctuations. This would be consistent with the
behavior of Cjg and Cy.

The results in the low temperature range show that mod-
els U and F have different behaviors for 7<<0.3T). Model F
shows a small increase of specific heat and entropy around
T=0.05T which does not appear for model U. This may be
related to the existence of inherent structures with an energy
very close to the ground state for model F, which do not
exist for model U (see insets in Fig. 4).

0 0.1 020304050607

conformational entropy in loga-
rithmic scale.

T/ T

IV. DYNAMICAL ASPECTS IN EQUILIBRIUM

The inherent structure landscape gives a static view of the
energy surface of the protein and provides us with some
information on the states which are accessible to the mol-
ecule. We want now to examine the fluctuations of the pro-
tein in equilibrium at a given temperature because they are
important for its function and have been extensively studied
experimentally [6]. One of the issues is the existence and
properties of the so-called “dynamical transition” of proteins,
which is observed at around 200 K for many proteins.

A. Onset of the fluctuations

Figure 6 shows the temperature evolution of the fluctua-
tions of the protein model in the low temperature range 7
< 0.7T_f, measured by

N"
A== (- (), (19)
N roi
where d? is the distance between residue i and the center of
mass of the protein. It is a quantity which is sensitive to the
global fluctuations of the protein in a way which is very
similar to the Debye-Waller factor, which only has a meaning
for a protein crystal and cannot be defined for the single-
protein model that we study here. Figure 6 clearly exhibits
two regimes for the thermal fluctuations of the model pro-
tein, in a striking similarity with the experimental observa-
tions made, for instance, by Mosbauer absorption spectros-
copy [6] or neutron scattering [5]. Below Tj,~0.4T}, the
calculation shows a linear increase which can be expected
from the harmonic vibrations of the residues, but around
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FIG. 6. Temperature variation of the average fluctuations of the
positions of residues for models U and F, measured by Au® [Eq.

(19)].

T=0.4T} the fluctuations start to rise much faster with tem-
perature. The change is sharp for model F" and smoother for
model U but clearly noticeable in both cases.

B. Location of the fluctuations

The quantity Au? can be used to determine the location of
the fluctuations if, instead of summing over all the residues
as in Eq. (19), we compute it for a single residue. Figure 7
shows the result at different temperatures for models U and
F. First one notices that the fluctuations are not homoge-
neous along the protein, some residues appearing as peaks
over a low background, in agreement with experimental re-
sults obtained in actual proteins [40]. This is not surprising
because it simply reflects the inhomogeneities of proteins.
For instance, the largest peak in Fig. 7 is obtained for residue
47 belonging to a loop connecting two 3 strands, which cor-
responds to a highly flexible part of the protein. What is
more interesting is the significant difference between model
U and model F for these large fluctuations. For model U the
largest fluctuation appears abruptly between 7=0.357, and
T=0.40T; and it is highly localized on one residue. Several
other sites also show fluctuations that become large at high
temperature, but they are still isolated and scattered along the
protein chain. On the contrary, model F' shows more cooper-
ativity. The growth of the largest amplitude fluctuation when
temperature increases is more gradual and involves several
sites around the most mobile residue. Moreover, the fluctua-
tions are very different from one region to another. In the Sy
and « helix region of the protein chain the fluctuations do not
grow significantly with temperature, whereas the [ region
shows a large growth distributed over many of its sites. This
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FIG. 7. Fluctuations of the position of the residues as a function
of the index of the residue along the protein chain, at different
temperatures, for model U and model F. As indicated in the figures,
residues with the lower indices correspond to the By terminal part
of the protein, residues with intermediate indices belong to the «
helix, while the residues with the higher indices are part of the B,
terminal region. The different curves show Au?/(T/ Ty) at tempera-
tures 7=0.20-0.60 by steps of 0.05, the curves being in order of
increasing temperatures from bottom to top.

higher cooperativity of model F is consistent with several
other observations in our calculations: the folding transition
(Fig. 2) and the change in slope in the variation of Au® vs T
(Fig. 6) are both sharper for model F than for model U.

Another way to assess the distribution of the fluctuations
within the protein is to examine distances between atoms
belonging to the main structural elements of the protein, i.e.,
the two B sheets and the « helix. Relative fluctuations of
different structural elements can be defined by

- <d>2> ( 2>
A’I‘SS’_( pg <d >2 ppzl<d> 5 (20)

where the index p designates a pair of residues, the first one
belonging to structural element S and the second one to
structural element S'. For given S and S’, the sum extends
over the N, possible native pairs. For §=S’, Argg provides a
measure of the rigidity of the structural element, while, for
S#S’, Args, measures the fluctuations in the relative mo-
tions of the two structural elements.
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FIG. 8. Temperature evolution of the fluctuations of the dis-
tances between different structural elements of the protein [defined
by Eq. (20)] for model U and model F. The residues belonging to
each structural element are listed in the caption of Fig. 1.

Figure 8 shows a significant difference between models U
and F. An increase of the amplitude of the fluctuations
around Tp=04T, is visible for both models, in agreement
with the global results provided by Au? (Fig. 7) but the rise is
much more significant for model F, and, as noticed above it
mainly concerns one part of the protein, attesting of a greater
cooperativity. The fluctuations inside the [ sheet rise very
significantly, and this also affects the relative motions By
—Bc and a—Bc. The large fluctuations inside the B sheet
come from a relative motion of the two B strands, showing
again that model F exhibits some collective effects.

Thus, for the model that we study, the dynamical transi-
tion temperature 7', appears as the onset of fluctuations on a
large scale. This is consistent with the properties of the sta-
tistical quantities studied in Sec. III B. As discussed for Fig.
5, the comparison of C;g with Cy,/N, implies that conforma-
tional fluctuations begin to dominate the protein’s fluctua-
tions above 0.47. This is also suggested by the beginning of
growth for the conformation entropy Sjs.

C. Time scale of the fluctuations

In order to characterize the fluctuations of the protein, it is
also important to determine their characteristic time scale.
Let us consider a quantity x(¢) that fluctuates in time such as
the dissimilarity factor x(r)=d(A,B)(r). We can compute the
time-averaged quantity

x(t;7) = lme(t’)dt’ (21)

and then evaluate its fluctuations according to the usual ex-
pression,
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FIG. 9. (a) Variation of the fluctuations of the dissimilarity D
between the model conformations and the native structure averaged
over a time 7 vs 7 for model U at T=0.7Ty. The solid line shows the
decay given by the law of large numbers. (b) Arrhenius plot of the
relation time 7, deduced from the fluctuations of the dissimilarity
factor for models U and F. The solid lines are fits to 7,
ccexp(Ep/kgT) with activation energies Ep=6.2kgT for model F
and Ep=5kgT for model U.

AR(7) = ((1;7), — (x(1;7)7, (22)

where the averages (-), are time averages. Obviously, if 7
— o, A¥*(7)—0, and generally Ax*(7) decays with an in-
crease of 7. But the way it decreases tells us about the time
scales of the fluctuations of x(r) because as long as 7 is
shorter than the typical time scale of the variation of x(z),
AxX?(7) is not significantly different from the fluctuations Ax?
of the original quantity x(r), while it decays quickly when 7
becomes longer than the typical time scale of the fluctuations
of x(1).

Figure 9 shows the result of such a calculation where
x(t)=D(z) is the dissimilarity between the instantaneous
structure and the native state, at a given temperature. It
clearly shows the existence of a characteristic time scale, that
we denote by 7, (7,~5X 10° time units). For 7> 7,, Ax*(7)
decreases significantly faster than for lower values of 7
which indicates that the fluctuations of the dissimilarity D
include a slow component having a period at least equal to
7. This appears clearly in Fig. 10 which shows the time
evolution of the dissimilarity factor at 7=0.57. The results
are consistent with a splitting of the fluctuations in two com-
ponents, small-amplitude fast fluctuations within the basin of
attraction of a given inherent structure and large jumps from
basin to basin as discussed in Sec. IIIL.

Similar calculations can be performed for various quanti-
ties, and in particular for the fluctuation of the energy of the
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FIG. 10. Example of the time evolution of the dissimilarity fac-
tor D at T=0.5T;. The presence of two types of fluctuations is
visible: fast small amplitude variations and large changes occurring
from time to time.

model, which determine the specific heat. The same behavior
is observed, although the change of slope at 7=7, may be
smaller for some quantities. The value of 7, does not depend
on the quantity that is considered, showing that the relax-
ation time 7, is an intrinsic property of the system.

If our analysis that 7, is related to jumps from one inher-
ent structure to another is correct, it should depend on tem-
perature. As shown in Fig. 9(b), it exhibits an Arrhenius be-
havior in the range 0.457,<T<0.75T; For lower
temperatures the relaxation time becomes so large that it can-
not be measured in a simulation, and, for higher tempera-
tures, approaching 7', the separation of time scales between
the oscillations within the basin of an inherent structure and
the diffusion from basin to basin becomes blurred. Figure
9(b) shows that the relaxation time is significantly larger for
model F than for model U. The activation energy is 6.2kz7T
for model F and 5kzT, for model U. It can be viewed as the
typical barrier to move from the basin of an inherent struc-
ture to another, suggesting that the energy landscape of
model U is smoother than that of model F. This point is
confirmed by the folding studies of Sec. V.

The longer time scales associated to the fluctuations of
model F with respect to model U can also be observed in
another aspect of our study, the calculation of the density of
inherent states by sampling the phase space. As discussed in
Sec. III the derivation of Qg(e,) from Pyle,,T) should be
independent of the temperature 7" at which the phase space is
sampled to determine P(e,,T). We noticed, however, that
this is not exactly true because, at low temperature, the finite
time of the simulation could lead to insufficient sampling and
some inherent states can be missed. This is more critical
when the switch from basin to basin is slow, which is the
case for model F. Figure 11 illustrates this point by compar-
ing Q4(e,) obtained by sampling at two different tempera-
tures for model U and model F: while for model U, even the
low temperature calculation can find most of the inherent
states, for model F, on the contrary, many states are missed
when the temperature is too low. It should, however, be no-
ticed that this is not only a matter of time scale, but also a
matter of the accessibility of the states. As discussed above
and in Sec. V the energy landscape of model F is rougher
than for model U so that some basins of attraction may lie
behind high barriers or be very narrow.

At this stage of our study, although model U and model F
show rather similar properties, we have exhibited significant
differences:
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FIG. 11. Density of inherent states of models U and F obtained
at different temperatures, showing the difficulty to get a complete
sampling of the phase space for model F' at low temperature.

(i) Both models show a qualitative change in their fluc-
tuations which occurs in a narrow temperature range around
Tp=0.4Ty, which appears to be the temperature of the dy-
namical transition observed in proteins. This transition is
sharper and more cooperative for model F' than for model U.

(ii) The probability of occupation of the inherent struc-
tures at the folding temperature Ps(e,.,T,) (Fig. 4) clearly
shows two humps for model F, which corresponds to the
coexistence of two different kinds of states, folded and un-
folded. On the contrary for model U, there is an overlap of
the probabilities of these two kinds of states, with many in-
termediate states.

(iii) The fluctuations in model F are much more coopera-
tive, while model U can exhibit very large fluctuations of a
single residue in a loop.

(iv) The time scale of the fluctuations between the basin
of attraction of one inherent structure to another is about one
order of magnitude longer for model F than for model U.
The energy landscape is rougher for model F' than for model
U.

All these points suggest that model F is more appropriate
to describe an actual protein, i.e., a minimal frustration has to
be introduced in the Go model to make it sufficiently realis-
tic. This is confirmed by the study of the dynamics of the
folding of Sec. V.

V. OUT OF EQUILIBRIUM PROPERTIES:
DYNAMICS OF THE FOLDING

In Sec. II we showed that both model U and model F fold
in the sense that the cooling of an unfolded initial state at
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FIG. 12. (a) Histogram of the folding time of model U and
model F at two temperatures. The large peak observed at low T for
model F occurs because most of the initial states do not reach the
native state within the simulation time of 10% time units. (b) Time
evolution of the folding of model F at different temperatures. The
time points 7; selected to calculate U 1s(t;) evolve with a logarithmic
scale according to #;,,=2t; and for each calculation the time inter-
val At for the integration is Az;=(1—12)z; so that the time domains
which are analyzed are adjacent to each other.

high temperature leads to a well defined state at low tempera-
ture. However, the dynamics of the folding is very different
for the two models. To test this aspect, we have performed a
series of out-of-equilibrium studies in which a thermalized
initial state which is a random coil at temperature T
=1.73T is suddenly cooled to a temperature T, lower than
T;. For each value of T, 30-50 MD simulations are per-
formed allowing us to get an ensemble average of the dy-
namics of the folding. The folding time 7, is the time between
the temperature jump and the instant at which the model
reaches the basin of attraction of the native state.

Figure 12(a), shows histograms of ¢, for the two models at
two temperatures 7,, which both are above the temperature
of the dynamical transition 7. When T, is sufficiently high
(T,=0.78T in Fig. 12), both models fold within the duration
of our MD simulations, i.e., in less than 10® time units, but
the folding time of model F extends to values about two
orders of magnitude larger than the largest folding time of
model U. For lower T, (T,=0.59T in Fig. 12), many of the
initial configurations of model F do not achieve folding in
10% time units while the largest folding time of model U
hardly exceeds 10° time units. Although we work in dimen-
sionless variables and our parameters are not fitted to repro-
duce experimental results, an estimate of the time scales of
our simulations can be made. The period for the dynamics of
the vibrations of two residues forming a native contacts is
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about ten time units for our model. Experimentally such
modes are observed in a range 10—100 cm™!. Taking an es-
timate of 20 cm™! this corresponds to a period of 1.7 ps, so
that our time unit corresponds approximately to 0.2 ps. The
folding time of model U, of the order of 10°—10° time units,
corresponds thus to 0.02—-0.2 us, which is very small for an
actual protein, while the values of 107 to more than 10® time
units of model F, corresponding to 2 to more than 20 us, are
more realistic for a small protein although they are still
small. This is an additional hint that model F is more appro-
priate than model U to describe a protein in a broad tempera-
ture range, and particularly at temperatures well below 7.
Figure 12(b) completes the view of the dynamics of the
folding of model F because it shows the time evolution at
different folding temperatures T, of U(z,T,) defined by

1
Ups(t,T,) = A f

t

t+Atr

e, (t)dt ), (23)

which measures the average inherent structure energy of the
protein in a small time interval A¢. The value of Af, mea-
sured with the time units of the simulation, is always well
below the characteristic time of folding of the models. Very
slow (logarithmic) relaxations are observed, even for T,
>Thp.

Although folding is an out-of-equilibrium process, some
of its properties can be obtained from equilibrium studies. It
is possible to build an equilibrium free energy profile along
the folding pathway, i.e., a one-dimensional picture of the
free energy landscape plotted by using the dissimilarity fac-
tor D as the reaction coordinate. The most straightforward
approach is to sample the phase space by MD simulations,
and to compute the dissimilarity D with the native state for
each of the sample points. A histogram of the number of
events for which the dissimilarity lies in the range [D,D
+dD] gives a probability distribution P(D) which can be
used to build an effective free energy F(D) defined by
P(D)=exp[-BF(D)]. This calculation can be made for the
actual points of the MD trajectories, which gives a full ef-
fective free energy. But for each sample point one can also
determine the corresponding inherent structure by quench-
ing, and then compute D for this inherent structure. This
gives a probability density P;s(D) and an inherent structure
free energy Fg(D). These free energies F(D) and F (D) are
plotted in Fig. 13 for model F at three temperatures in the
vicinity of the folding transition.

The quantities F(D) and F;4(D) have the shape that one
could expect: below the folding temperature they show a
deep minimum with a low value of D, which corresponds to
the folded state, and a second, higher and shallower, mini-
mum corresponding to an unfolded molten globule state. Ex-
actly at the folding temperature, the two minima have equal
effective free energies, and above Ty the minimum corre-
sponding to the unfolded state becomes the deepest. The
curve F(D) is shifted to higher values of D with respect to
F5(D) because fluctuations around the minima of the free
energy landscape bring additional contributions to the dis-
similarity with the native state, which are suppressed in
F5(D). Apart from this systematic shift, Fig. 13 shows that
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FIG. 13. Effective free energy F(D) (dotted line) and inherent
structure free energy Fg(D) (full line) of model F at three tempera-
tures in the vicinity of the folding temperature. The graphs have
been shifted along the vertical axis to get the same values for the
left minimum.

studying inherent structures can give almost the same results
as the points of the MD trajectories because the curves for
F(D) and F;4(D) are very similar. This is an additional proof
of the interest of the inherent structure analysis. However,
the calculation of F;4(D), as it has been done to compute the
results shown in Fig. 13, does not exploit the full power of
the analysis in the inherent structure landscape because it
relies on MD trajectories at the temperature at which we
wish to obtain F;g(D). In the vicinity of the folding tempera-
ture, this does not introduce any difficulty, but if we wish to
obtain Fg(D) at very low temperatures, MD simulations will
become highly inefficient to sample the phase space and may
suffer from ergodicity problems.

These difficulties are completely avoided if one uses the
inherent-structure landscape approach that we introduced in
Sec. IIT A. The idea is to reproduce the method that we used
earlier to derive the inherent structure density of states and
then the inherent structure partition function, but instead of
considering all the states at once, select the states having a
dissimilarity factor in a small range [D,D+dD]. Thus we
define a density of inherent states {;4(D,e,) and a probabil-
ity density of inherent structures P;g(D,e,,T), which are
such that

|
Qysle,) = J Q;4(D,e,)dD,
0

1
Pls(ea, T) = J PIS(D’ ea, T)dD . (24)
0

Separating inherent structures in the same D range, Eq. (9)
becomes

P,g(D,e,,T)dD = py(T)Qys(D,e,)e PéedD, (25)

so that the numerical determination of P;(D,e,,T) can be
used to compute €;4(D,e,), and then build an inherent struc-
ture partition function restricted to inherent states which
have a dissimilarity factor in the range [D,D+dD] by

ZIS(DsT)=fQIS(Dvea)e_'Beadea- (26)

The inherent structure partition function of Eq. (8) can be
expressed as
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FIG. 14. Inherent structure free energy Fy5(D,T) as a function of
the dissimilarity factor D of the inherent structures, obtained from
the analysis of folding pathways at different temperatures 7, for
model F.

1
le(T) = J le(D, T)dD, (27)
0

from which an inherent structure free energy F(D,T)
=—kgT In[Z;y(D,T)] can be derived.

Figure 14 shows the inherent structure free energy
Fii(D,T) as a function of the dissimilarity factor D of the
inherent structures obtained from probability densities
Pi(D,e,,T) computed along folding pathways at different
temperatures 7, for model F. It qualitatively exhibits the
shape that we have obtained from the straightforward analy-
sis leading to Fig. 13, but the results are much more reliable,
especially in the low temperature range because they do not
rely on the sampling of a low temperature MD trajectory. For
a folding temperature T, slightly below 7/, starting from the
unfolded state (large value of D) one first meets a shallow
well with a minimum around D=0.5, which can be under-
stood as the first stage of the folding, i.e., the evolution to-
wards a molten globule. This stage should be fast since it
corresponds to a decrease of the free energy. Then, if D
decreases further, the free energy raises again before drop-
ping to the inherent structure free energy of the native state
F;s(D=0,T). The maximum corresponds to the transition
state. The second stage of the folding involves overcoming
the maximum, and thus must be a slow step. In the same
figure made for model U, the barrier height from the molten
globule state to the transition state is very small. Therefore it
is not surprising that model U leads to very fast folding.

Thus Fig. 14 for model F appears to show the behavior
that we expect for an actual protein, but a more careful ex-
amination reveals, however, a feature that could seem puz-
zling: for decreasing values of 7,, the barrier E from the
molten globule state to the transition state decreases very
significantly, so that Eg/(kzT,) actually decreases in spite of
the decrease of T,. This could lead to the conclusion that the
folding time should decrease when T, decreases. This is not
what Fig. 12 shows for model F since, on the contrary, the
histogram shows the presence of many cases which do not
succeed to fold in 10® time units. Actually the figure shows
that, at low values of 7,, the histogram of the folding times
for model F splits into two parts: there is a first set of folding
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times in the range 10°-107 time units, which is the same
range as the range of folding times observed at a higher 7>,
and there is a second set group of folding times around 10%
time units or larger. The first set would be consistent with the
properties of the inherent structure free energy of Fig. 14,
while the second set is not. This suggests that two different
mechanisms could contribute to determine the folding time
of model F, as it is observed in studies of some proteins
made with more complex models [41] or in experiments
[42]: some folding pathways can evolve rather quickly to the
native state, while others are trapped for a very long time in
a kinetic trap. If the density of states Q;(D,e,) in the free
energy basin of the kinetic trap is small, the kinetic trap may
not lead to any peculiarity in the inherent structure free en-
ergy landscape, but, if it exists in model F, it should appear
in studies which explicitly analyze the time evolution of the
folding. This is indeed the case as shown by Fig. 15, which
displays the probability distribution of the inherent structures
Pji(e,,T,) derived from the sampling of folding trajectories
at temperature 7, in a given time range.

In each case Pig(e,,T,) for the whole folding trajectory
(except for a short initial transient) is compared to Pig(e,, T5)
in the last part of the simulation (0.7 X 108 <r<1.0X 108
time units), in order to show how the population of the dif-
ferent inherent structures evolves with time. The calculation
of Pjs(e,,T,) is made by a statistical averaging over 30 or 50
different folding trajectories.

At the lowest value of 75, T,=0.34T, which is below the
dynamical transition, the tendency of the protein to stay fro-
zen in metastable states instead of approaching its ground
state is clear. Even at the end of the simulation time, a broad
range of inherent states are occupied, although a tendency to
evolve towards the ground state is visible because the popu-
lation of the inherent states with the highest energies is lower
in the last part of the simulation than in the figure showing
the average over the full simulation. For a slightly higher
value of T, (T,=0.48T;>T)p), the picture changes sharply.
At the end of the simulations, in the low e, range the popu-
lated states tend to concentrate towards the ground state al-
though, in this range, Pig(e,,T>) still looks random. But
there is a group of inherent structures with a higher energy
[30<<e,/(kpT;)<50] which stays populated in the long
term. These states correspond to a kinetic trap. They appear
as a set of states from which it is difficult to escape to evolve
toward a lower energy state. On the time scale of the calcu-
lations, the region of the protein phase space corresponding
to these states seems to be disconnected from the rest of the
phase space. Actually there are phase space trajectories
which can leave these states, but the decay of the population
of the kinetic trap is, however, very slow, indicating that the
trap is separated from the native state by a high barrier. The
decay of its population is hardly visible in Fig. 15(b) but it
can be detected from the evolution of U(#) in Fig. 12. Fig-
ure 15(c) shows that the same phenomenon persists at higher
temperatures (7,=0.69T}). The same range of inherent struc-
ture energies stay populated for a very long time, while the
inherent structures with lower energies have a distribution
which is smoother than at 7,=0.48T}, the population of the
low-energy states decreasing approximately exponentially
with their energy.

PHYSICAL REVIEW E 74, 041916 (2006)

(@) T/T;=0.34

- 1 10%<t<10” -
P-\
3
8
L MJMM‘ -
o
L 1 |[|l L

o~ 1t 0.7x108<t<10E -
L
=
L
a2 0.01 §
o
| ! !

1 10%<t<10” -
- T’\A -
TN L
T T T
1 0.7x10 °ctc10” - -
0.01 -

€. / kBTf

Pis(e,,T)

Pise,T)

() T/T,=0.69

1 10%<t<10” -
0.01 ﬁ’\ ]
ll l 1 1
T T T T
1 0.7x10°<t<10° -
0.01 H.'\\ 1

€. / kBTf

Pis(e,,T)

Pise,T)

FIG. 15. Probability distribution of the inherent structures
Pig(e,,T,) derived from the sampling of folding trajectories at tem-
perature 75 in a given time range for various folding temperatures
T,. In each case the top figure shows Pis(e,,T,) averaged for the
whole duration of the simulation 10® time units, except for the first
10° time units which correspond to a short transient time during
which the results might be influenced by the initial condition of
each simulation. The lower figure shows Pis(e,,T>) in the last part
of the folding trajectory (0.7 X 108<¢<<1.0X 10® time units). (a)
T,/Ty=0.34, (b) T,/T;=0.48, (c) T,/T;=0.69. A logarithmic scale
is used for the probability distributions in all these figures.

Thus for model F a study of the time evolution of the
occupation of the basins of attraction of the structures shows
the existence of a set of states in which the protein may stay
for a very long time. The roughness of the energy landscape
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within this kinetic trap seems to be lower than in the vicinity
of the native state because the probability distribution
Pji(e,,T,) for the states in the trap shows an exponential
decay with the energy e, well before the probability distri-
bution of the states near the ground state reaches such a
behavior. A plot of the structure of the protein when it is
trapped in these long-lived metastable states shows that the
a-helix has a “knee” and the 3 sheet is distorted with respect
to the native structure. The presence of such a kinetic trap
indicates that model F is rich enough to exhibit the complex
properties which are observed in protein folding, contrary to
model U which leads to an unrealistically fast folding.

VI. DISCUSSION

In the Introduction, we posed three questions about pro-
teins. The study that we presented in this work puts us in a
position to provide some answers.

(i) How is the energy landscape of a protein? Using an
analysis based on the inherent structures of the protein, i.e.,
its metastable states, we have shown that it is possible to
build an “inherent structure landscape,” which is a kind of
simplified view of the free energy landscape, which is acces-
sible to numerical computations even for a rather complex
protein model. It can be used to build a statistical physics
analysis in terms of an inherent structure partition function,
from which a reduced thermodynamics can be obtained. This
simplified picture cannot describe all aspects of protein dy-
namics because it ignores the fluctuations inside the basin of
attraction of an inherent structure, but it is nevertheless a
useful tool to analyze the results of the computations, as
shown, for instance, in our investigations of the dynamics of
the folding. One of its major interests is that the inherent
structure landscape is best obtained from molecular dynam-
ics simulations around the folding temperature, which effi-
ciently sample the full phase space and do not suffer from a
possible lack of ergodicity which could appear in low tem-
perature simulations. Once the inherent structure density of
states is obtained it can be used at any temperature, including
very low ones, to derive the reduced thermodynamics, which
provides a lot of data on the protein properties although it
does not include the small vibrational motions in the inherent
structure basins.

Another interesting point which emerges from our results
is the distribution of the energies of the inherent structures
which shows an exponential scaling, with two slopes. The
exponential scaling itself is known for some models of
glasses [38] and it has also been observed in small Lennard-
Jones clusters [39]. Tts existence for the protein model too
may be an indication of a deep similarity between proteins
and these systems. For proteins, the existence of two slopes
in the scaling [Eq. (12)], which is associated to two different
regimes in the distribution of inherent structures [Egs. (13)
and (14)] when the temperature changes from T<T, to T
>T,, may be related to their folding transition. It will be
interesting to test other protein models to determine whether
these properties of the density of inherent structures states
are general features of proteins. To our knowledge such a
two-slope feature has not been observed in Lennard-Jones
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clusters, but this may be because the energy landscape of
clusters has been determined in the temperature range of the
solid and liquid phases. There are a few inherent structures
relevant for the solid state, similarly to the few states that are
populated when a protein is its native state or its vicinity. At
higher temperatures clusters melt and in the range of the
relevant inherent structure energies, an exponential scaling is
found in their density of states, similarly to the proteins be-
low the folding transition. Thus it is tempting to make the
parallel between the three temperature domains that charac-
terize a protein, (i) low temperature “frozen” state below T,
(ii) folded state with its multiple conformations, (iii) un-
folded state, and the three phases of a cluster (i) solid, (ii)
liquid, (iii) gas. This could suggest that, for the high energy
inherent structures of a cluster, another exponential scaling
could exist, at least when the gas is sufficiently confined to
allow enough interactions between the atoms, as for the mol-
ten globule of the protein. Of course the analogy is crude and
speculative, but we think that the similarity of some general
features of the inherent structure landscape of proteins and
small atom clusters raises an interesting question: why are
proteins special? Of course we know that their structure and
the nature of their interactions, with a hierarchy of different
interactions, has not much to do with the structure and
simple interaction potentials of atomic clusters, but can we
detect this specificity of proteins from their equilibrium
inherent-structure energy landscape? The scaling of the den-
sity of inherent states might be fairly general, but the values
of its slopes are probably specific of a protein, in connection
with the temperature and sharpness of its folding transition.
Therefore understanding the relation between the potentials
that connect the residues and the scaling of the inherent state
energies appears an interesting open question closely related
to protein folding.

(ii) How does the protein explore its landscape? The
study of the fluctuations of the model versus temperature
shows a qualitative change at a temperature 7,~0.47,
where the amplitude of the fluctuations start to strongly raise
above the linear increase versus temperature which is ob-
served at T<<Tp. The fluctuations in model F are more co-
operative than for model U: the By sheet and a helix are
more rigid than in the unfrustrated case but the . sheet is
globally more flexible.

This increase in the fluctuations above a particular tem-
perature is very reminiscent of the dynamical transition
which has been observed around 200 K for many proteins
[6] and has been the object of a renewed interest in the last
few years [2]. In the experiments, this phenomenon is closely
related to properties of the water which is in contact with the
protein. First, water appears to be necessary for the existence
of the dynamical transition, which is not seen in dry samples,
and observed at higher temperatures for weakly hydrated
samples. Second, the analysis of the experiment points out a
clear correlation between a change in the fluctuation of the
water as temperature varies and the evolution of the dynam-
ics of the protein embedded in this water [21,43]. The role of
water, which is sometimes described as a “lubricant” in pro-
tein dynamics because it allows fluctuations which are nec-
essary for biological function, can be understood since water
molecules are making hydrogen bonds with some groups of
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the protein which, otherwise, would be directly linked by
hydrogen bonds. Thus water alters the strength of the inter-
actions within the protein.

Our calculations do not use explicit water but the role of
water is nevertheless included through the effective poten-
tials which link the amino acids. However, in our results, the
transition cannot come from a change in the properties of
water at a particular temperature because the model uses in-
teraction potentials that do not depend on temperature. Nev-
ertheless, the calculations show the same “dynamical transi-
tion” as in the experiments. We think that this is an
interesting result because it indicates that the complexity of
the energy landscape itself is sufficient to lead to such a
“transition.” This transition is not a true thermodynamic tran-
sition but, as shown in Sec. III, it corresponds to a tempera-
ture range around which the fluctuations from the basin of an
inherent structure to another take over the fluctuations inside
a single basin. It should be noticed that such a dynamical
transition can be observed in a model without side chains.
The complexity of the energy landscape of the C, chain is
sufficient to show such a behavior.

Of course in experiments the solvent and the side chains
play a role to determine the quantitative properties of the
dynamical transition, but our results suggest that they may
not be the only driving force. This view could raise an ob-
jection: since the dynamical transition is observed approxi-
mately at the same temperature for all proteins, it is tempting
to conclude that its origin should not be searched within the
protein itself but rather within the common factor to all the
experiments, the solvent. However, there may be another
simple explanation to the fact that T}, is almost the same for
all proteins although they may have very different structures.
The dynamical transition is the onset of conformational fluc-
tuations. Therefore it is not determined by global properties
of the proteins but by local effects which depend on the short
range interactions (native contacts in the terminology of the
G0 model). These interactions are (on average) the same for
all proteins, even if their global shapes can be very different
from each other. Thus the dynamical transition can have a
component which is intrinsic to proteins and nevertheless
occur around the same temperature for many proteins. Actu-
ally the views that the dynamical transition is due to the
solvent or that it is intrinsic to the protein are not exclusive.
We show with a simple model that a dynamical transition
intrinsic to the protein can exist, but it is certainly influenced
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by the properties of the solvent, which are themselves
strongly dependent on the protein because hydration water,
the water in contact with the protein, is very different from
bulk water [44]. The protein and the solvent are actually
deeply coupled, leading to a subtle interplay between the
solvent and the protein fluctuations.

(iii) What features are required in a “minimal” protein
model? Although this is a difficult question because the an-
swer depends on the properties of the protein which are of
interest, our studies show that a minimally frustrated Go
model is able to exhibit the two main features that character-
ize a protein, the folding to a well defined structure and the
dynamical transition. The ability of the model to lead to fold-
ing is not surprising because its design has been tailored for
that purpose, since the Go model favors interactions corre-
sponding to the native state. What is interesting is that this
constraint based on the geometry of the native state also
leads naturally to a model showing a dynamical transition,
although the interaction potentials are not optimized to quan-
titatively match the potential energy of an actual protein.
This points out the crucial role of the geometry of the protein
backbone. We have shown here that a significant improve-
ment towards results that match experimental observations
on proteins can be obtained by adding dihedral angle frustra-
tion. With this additional feature, Go models, which were
used only for folding studies or to analyze small amplitude
vibrations, appear to be able to describe conformational fluc-
tuations as well. The addition of the frustration requires a
minimal modification and it does not increase significantly
the complexity of the simulations, while it makes the model
much richer. Model F, which includes frustration, is able to
show a complex folding pathway including a kinetic trap,
and conformational fluctuations which exhibit some cooper-
ativity. This suggests that the mesoscopic model F' can be
used in a reliable way to investigate the thermodynamics and
dynamics of proteins at a qualitative level.

ACKNOWLEDGMENTS

We are very grateful to Fumiko Takagi for helpful advice.
N.N. would like to thank JSPS-CNRS and MEXT KAK-
ENHI (Grant No. 16740217) for support and M.P. would like
to thank Hans Frauenfelder (Los Alamos) and Wolfgang
Doster and Fritz Parak (Munich) for helpful discussions and
CNRS for the support of a visit to Ibaraki University where
this paper was completed.

[1] A. Fersht, Structure and Mechanism in Protein Science (Free-
man, New York, 1999).

[2] P. W. Fenimore, H. Frauenfelder, B. H. McMahon, and R. D.
Young, Proc. Natl. Acad. Sci. U.S.A. 101, 14408 (2004).

[3] A. L. Tournier and J. C. Smith, Phys. Rev. Lett. 91, 208106
(2003).

[4] W. T. Franks, D. H. Zhou, B. J. Wylie, B. G. Money, D. T.
Graesser, H. L. Frericks, G. Sahota, and C. M. Rienstra, J. Am.
Chem. Soc. 127, 12291 (2005).

[5] W. Doster, S. Cusak, and W. Petry, Nature (London) 337, 754
(1989).

[6] F. G. Parak, Rep. Prog. Phys. 66, 103 (2003).

[7] Karen E. S. Tang and Ken A. Dill, J. Biomol. Struct. Dyn. 16,
397 (1998).

[8] D. Collin, F. Ritort, C. Jarzynski, S. B. Smith, 1. Tinoco, and C.
Bustamante, Nature (London) 437, 231 (2005).

[9]1J. Wang, Z. Zhang, H. Liu, and Y. Shi, Phys. Rev. E 67,
061903 (2003).

041916-16



MODELING PROTEIN THERMODYNAMICS AND...

[10] V. Kurkal-Siebert and J. C. Smith, J. Am. Chem. Soc. 128,
2356 (2006).

[11] A. E. Garcia and J. Onuchic, Proc. Natl. Acad. Sci. U.S.A.
100, 13898 (2003).

[12] A. Torcini, R. Livi, and A. Politi, J. Biol. Phys. 27, 181
(2001).

[13] L. Bongini, R. Livi, A. Politi, and A. Torcini, Phys. Rev. E 68,
061111 (2003).

[14] K. A. Dill, S. Bromberg, K. Yue, K. M. Fiebig, D. P. Yee, P. D.
Thomas, and H. S. Chan, Protein Sci. 4, 561 (1995).

[15] H. Taketomi, Y. Ueda, and N. G0, Int. J. Pept. Protein Res. 7,
445 (1975).
[16]J. D. Bryngelson, J. N. Onuchic, N. D. Socci, and P. G.
Wolynes, Proteins: Struct., Funct., Genet. 21, 167 (1995).
[17] L. Bongini, R. Livi, A. Politi, and A. Torcini, Phys. Rev. E 72,
051929 (2005).

[18] M. A. Miller and D. J. Wales, J. Chem. Phys. 111, 6610
(1999).

[19] D. A. Evans and D. J. Wales, J. Chem. Phys. 119, 9947 (2003).

[20] R. Zhou, B. J. Berne, and R. Germain, Proc. Natl. Acad. Sci.
U.S.A. 98, 14931 (2001).

[21] M. M. Teeter, A. Yamano, B. Stec, and U. Mohanty, Proc.
Natl. Acad. Sci. U.S.A. 98, 11242 (2001).

[22]J. Smith, K. Kuczera, and M. Karplus, Proc. Natl. Acad. Sci.
U.S.A. 87, 1601 (1990).

[23]J. A. Hayward and J. C. Smith, Biophys. J. 82, 1216 (2002).

[24] C. Baysal and A. R. Atilgan, Biophys. J. 88, 1570 (2005).

[25] A. L. Lee and A. J. Wand, Nature (London) 411, 501 (2001).

[26] E. Kussel, J. Shimada, and E. L. Shakhnovich, Proteins:
Struct., Funct., Genet. 52, 303 (2003).

[27]7J. D. Bryngelson and P. G. Wolynes, Proc. Natl. Acad. Sci.
U.S.A. 84, 7524 (1987).

[28]J. D. Bryngelson, J. N. Onuchic, N. D. Socci, and P. G.
Wolynes, Proteins: Struct., Funct., Genet. 21, 167 (1995).

PHYSICAL REVIEW E 74, 041916 (2006)

[29] A. M. Gronenborn, D. R. Filpula, N. Z. Essig, A. Achari, M.
Whitlow, P. T. Wingfield, and G. M. Clore, Science 253, 657
(1991).

[30] W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics
14, 33 (1996). VMD was developed by the Theoretical and
Computational Biophysics Group in the Beckman Institute for
Advanced Science and Technology at the University of Illinois
at Urbana-Champaign.

[31]J. Karanicolas and C. L. Brooks, J. Mol. Biol. 334, 309
(2003).

[32] C. Clementi, H. Nymeyer, and J. N. Onuchic, J. Mol. Biol.
298, 937 (2000).

[33]J. D. Honeycutt and D. Thirumalai, Biopolymers 32, 695
(1992).

[34] D. P. Yee and K. A. Dill, Protein Sci. 2, 884 (1993).

[35] A. Sali, E. Shakhnovich, and M. Karplus, Nature (London)
369, 248 (1994).

[36] F. H. Stillinger and T. A. Weber, Phys. Rev. A 25, 978 (1982).

[37] H. Frauenfelder, F. Parak, and R. D. Young, Annu. Rev. Bio-
phys. Biophys. Chem. 17, 451 (1988).

[38] A. J. Bray and M. A. Moore, J. Phys. C 14, 1313 (1981).

[39]J. P. K. Doye and D. J. Wales, J. Chem. Phys. 102, 9659
(1995).

[40] H. Frauenfelder, G. A. Petsko, and D. Tsernogolou, Nature
(London) 280, 558 (1979).

[41] J. Shimada, E. L. Kussell, and E. 1. Shakhnovich, J. Mol. Biol.
308, 79 (2001).

[42] W. Hoyer, K. Ramm, and A. Pluckthun, Biophys. Chem. 96,
273 (2002).

[43] P. W. Fenimore, H. Frauenfelder, B. H. McMahon, and R. D.
Young, Physica A 351, 1 (2005).

[44] Hydration Processes in Biology, edited by M.-C. Bellissent-
Funel (IOS Press, Amsterdam, 1999).

041916-17



